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About the so-called usual models, in which the total momentum is conserved, it is 
well known that the total energy is not conserved due to the nonuniformity of space 
caused by spatial grids. It fluctuates and increases in time from a stochastic origin. 
In order to see the accuracy of the plasma simulations, it is important to evaluate the 
fluctuation K, , which is more dominant for small errors during the shorter time. We 
study its standard deviation in I, o{K,,:, and the correlation time of dK,‘K . dt, T,, about 
periodic one-dimensional systems, where K is the kinetic energy. We evaluate o{K,} by 
invoking the stochastic theory and obtain a scaling law: 

o{K&/‘K N (2/7r)li2 . 7 . {(2M)‘h>,&’ . (t~,w,~)‘l~, 

where 2M is the number of the grids per one period, n, is the electron density, X, is the 
Debye length, and wg is the plasma angular frequency. The coefficient 7 depends on the 
magnitude of the unphysical grid force of each model. Our simulations with the usual 
models (CIC-PIC, modified SUDS, and method 2:2) support this scaling law. We 
obtain the correlation time empirically. It is found that 7c N At if At is sufficiently 
large, and 7, z$ A/uth if A;(At . vfb) > 3, where At is the time step, A is the grid dis- 
tance, and atlr is the thermal velocity of the electron. 

I. INTRODUCTION 

From a large number of runs, Hackney has derived empirical laws of the error 
of total energy [l, 141. Assuming a linear increase in time, he defined the heating 
time 7H , during which the total energy increases by 25%. The conception of the 
heating time is useful in the case of sufficiently large error (an example is presented 
in Ref. [l, Fig. 4]), or has a meaning for long periods of time. In the usual simula- 
tions, however, the heating time cannot be measured, because the energy incre- 
ment is much smaller than the energy fluctuation, which is the same kind of 
numerical error as the energy increment. Accordingly, the measurement of the 
fluctuation in total energy is useful for monitoring simulations. 

In this paper, we evaluate the fluctuation of total energy on simple assumptions 
and make a comparison between these estimations and the numerical results in 
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the usual models, which calculate the total momentum conserved. Here we explain 
the difference between the energy increment and the energy fluctuation along the 
outline of Hackney’s consideration [l, p. 241, because we consider that these two 
quantities are dominated by the same stochastic process. We define Kg as the 
difference between the initial total energy H,, , and Kg as the energy increment, 
which is obtained by averaging the fluctuation of Kg during a sufficiently long 
period of time. Then the energy increment in time t, which is due to the presence 
of the unphysical grid force 6F, is 

where (6F2) is a random force fluctuation of square magnitude, m is the particle 
mass, and N, is the number of particles. The standard deviation of Kg , u{Kg}, is 
considered as follows. 

a{K,) = o{N,m(u * Au)} = /ND2 (1” u - SF dt)2/1’2 

= 1~;~ . N, (s,” 6F dt)zl”’ : utA(8P)1/2 (tTc)1/2. 

In order to evaluate the fluctuation in total energy both theoretically and experi- 
mentally, the following way is more convenient. Using the total energy 

we express the above considerations in a differential form: 

dH/dt = A(t) - H, (3) 

where A(t) is the fluctuated function of t. Its mean value is zero, and so the standard 
deviation a{A(t)} and the correlation time rC are characteristic quantities. Namely, 
the evaluation of o{K,) in t is reduced to the computation of A(t) and TV . 

Lewis er al. also investigated the fluctuation in total energy [6, I1 1. They experi- 
mentally discovered a relation concerning it: AH cc I/(n,X,), where 

AH = (Hm, - ~min)/(~msx + Hmin). 

Our interests are focused on the problem of how much the spatial interpolation 
of each model influences the fluctuation of total energy. For convenience, we 
utilize the Fourier transform in order to solve the Poission equation, and adopt the 
sharp-cutoff cloud [4] as the gridless shape factor throughout this work. In this 
paper, we do not compare the spatial resolutions, the execution speeds, and so on, 
of all the models. 

581/19/2-z 
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In Section II, we derive &t(t)), applying the one-dimensional periodic system 
of plasma as a test problem. In Section III, we measure u{A(t)) in actual simula- 
tions and compare it with the above estimation. As to the correlation time 7e , we 
discuss it qualitatively. Experimentally, we calculate the autocorrelation function 
and measure the correlation time. The results verify the above discussion. 

II. THE FLUCTUATION IN TOTAL ENERGY 

The Basic Equations of the Gridless Cloud Plasma 

We consider a periodic one-dimensional system which is composed of two 
species of N ions and N electrons. Each species has the equal magnitude of the 
charge and the system is neutral. The mass and charge densities per unit area of 
the ith particle are mi and ei , respectively. Following Refs. [4, 51, we adopt S(x) as 
the shape factor of clouds. Then the kinetic equations of the particles are 

dxildt = lli 3 mi dL?Jdt = Fi , (4) 

s 

L 

Fi = ei S(x - xi) E(x) dx, (5) 
0 

where L is a period. The electrostatic field is given by 

E = -d@/dx, d2@ldx2 = -l/co F eiS(x - xi). 
i=l 

The total energy H, which is an invariant of the system, is the sum of the kinetic 
energy K and the field energy W, 

If = K + W = zl ~+m& + $ei joL G(x) S(x - xi) dxl. (7) 

The shape factor S(x) can be expanded to the Fourier series from the periodic 
condition and is an even function of x due to the symmetry of space, 

S(x) = (l/L) 5 S, cos 29rmx/L, 63) 
VI=0 

where the coefficient S, should be satisfied with the normalizing condition and 
MC corresponds to the maximum mode number in the system. 
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Interpolation of the Shape Factor 

When we solve the above equations using the digital computer, we commonly 
introduce the spatial grids in order to save the computer time. We obtain the field 
quantities at the grid points and with them interpolate the quantities at other 
points. The shape factor S(x - xi) for the particle position xi is approximated to a 
function S,(x, x,), which is a linear combination of S(X - +,*J, where xiOfl are n 
nearest grid points of xi (I = 0, l,..., n/2 for n = euen or (n - 1)/2 for 12 = odd). 
The total energy H cannot, however, be conserved in the usual models, because S, 
loses the property of the spatial uniformity owing to this approximation. This is 
the essential cause of the numerical error, if the particles per one Debye length are 
few. Accordingly, the choice of S, has been an important problem. Here we analyze 
the properties of the approximated shape factor S, of CIC-PIC (n = 2) [2, 31, 
method 2/2 (n = 3) [6], and modified SUDS (n = 3) [7] in order to estimate the 
errors of the conserved quantities. 

The system is assumed to have 2M grids. Then the grid distance d and the 
normalized grid distance d, are 

A = L/2M, A, = T/M. (9) 

Generally M is equal to or greater than M, . The case of M > M, is equivalent to 
the higher-mode-cutoff method [8]. 

Next we define xi,, as xi = xi0 + ai, where Si is measured from the grid points, 

x1,, = [xi/A] x A for n = even, 

xi0 = [x,/A + 0.51 x A for n = odd, 

where the square brackets denote the Gauss symbol. Then the approximated shape 
factor Sjn) is written in the forms: 

Interpolation with the values at two grid points. 

S~‘(X, Xi) = (1 - Si/A) . S(X - X3 + (S,/A) . S(X - XiO+l), 

Interpolation with the values at three gridpoints. 

(11) 

$)(x, Xi) = w-,S(x - x& + w,S(x - XjJ + w+J(x - xjo+l), w 

where M’~ is a weight of the interpolation, which is the polynomial of Si . The 
slight modification of the above equations is necessary at the end points of the 
system, by considering the periodic condition. 

As a method of determining wi , we attempt to set S, well aproximated to S in the 
lower modes, which dominate the collective motions of the plasma. In other words, 
we determine wi so that the difference S - Sj3J is 0(A3) except for 6, = *A/2. In 
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this case, however, the weight function of this method has discontinuties similar to 
the dipole approximation [7]. As is pointed out [7, 121, these discontinuties enhance 
the error of total energy. In actual simulations we verified that the error in this 
method is larger than in CIC-PlC, except for M, < $M (strong higher-mode- 
cutoff). Accordingly, we obtain wi from the condition that the difference S - S,j3) 
is O(B) as in CIC-PIC and that the weight function is continuous (Appendix A) as 
follows. 

(w-1 % wo 3 W,I> = {-(I -- Zy)(&/O)’ - (&/A)/2 + (1 - y)!2, (2 - 4y)(6,/~)2 

+ y, 41 - .+w4/4” + w4)P -t (1 - YW), (13) 

where y is an arbitrary constant, the magnitude of which considerably varies the 
properties of the model. The following two values have the distinguishing features: 

y = 0.50: Quadric terms vanish to reduce a linear interpolation. It is equivalent 
to modified SUDS. 

y = 0.75: The weight function is continuous to the first derivative. It is 
equivalent to method 212. 

The shape factor S, is satisfied with the conditions required for the shape 
factor, except for the uniformity of space. 

Interparticle Forces cmd Momentum Conseruations 

Lewis et al. derive the interparticle force for each of their models and prove the 
momentum conservation for the CIP-PIC (method l/l) [6]. Here we represent the 
interparticle force in the case of systems where all variable quantities are expanded 
to the Fourier series or an eigenfunction of the system. 

The force Fin) acting on thejth particle can be expressed in the form 

where 
k = (xjo - x,)/d, (15) 

f !$, : Symmetrical polynomials of & and Sj , 

f LyA : Alternating polynomials of Si and aj . 

As in the results of Lewis et al., the self-force Fi:’ vanishes and the total momentum 
is conserved exactly because I;:,:’ = -Fj,t (n’ . The concrete expressions off 1:; and 
f I$, are obtained by replacing S with S, in Eqs. (5) and (6) as follows. 
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f& = (I - (Si + s&i + 2S,S,p)(l - cos md,) + cos md, ) 

f(‘) = ((6. - 6,)/d} sin md c.m 
f(3) 
. s,m = (1 ‘_ 2~)~ (6 - 8 co: md, + 2 cos 24,) S&2/d” 

(W 

(16b) 

+ (1 - 2y){(3y - 1) - 2(2y - 1) cos md, + (y - 1) cos 24,) 

x (Si2 + S,“)/02 + OS(3y2 - 2y + 1) + 2y(l - 7) cos md, 

+ 0.5(1 - y)2 cos 2m4 + 0.5(1 - cos 2m4) sisjp, WC) 

fc3) = (6. - S.)/d{(4y - 2)(sin md, - 0.5 sin 2m4) SS./42 c.m 1 I t > 

+ y sin md, - O.S(y - 1) sin 2~4). (164 

An Evaluation of the Fluctuation in Total Energy 

Except for the energy-conserving codes developed by Lewis et al. [6] and 
Langdon [12], the error of total energy is inevitable for the usual models, even if the 
time integral is calculated exactly. Here we consider the properties of the error of 
total energy and estimate the magnitude of it. An origin of the error is that the 
approximated shape factor S, loses the uniformity of space or does not depend only 
on x - xi . In other words, it is considered that the spatial grids exert the unphysical 
forces on the particles in the system [8]. We assume this unphysical grid force 
SFP) as the difference between the force Fj” acting on the shape factor S*, which 
has the uniformity of space, and the force Fjn) acting on the approximated shape 
factor SF): 

@‘!“’ = Fb) - F.* = 3 , 1 
X 

[I 
fl$Si, Sj) - fck) COS T (Sj - 8,)/ sin &Cd, 

+ Ifly+QSi, Sj) - ~2) sin T (S, - SJ/ cos mkd,], (17) 

where Fj* is not equal to the force Fj acting on the shape factor S generally, because 
S, approximates S well in the lower modes but not in the higher modes at all. 
Accordingly, uz’ are correction factors caused by the interpolation, which converge 
to unity as m decreases. The unphysical energy K, which flows in or out the system 
is given by 

dKF’/dt = F vj SF?‘, (18) 
9.4 

where we assume that time is continuous. The effects of the finite time step are 
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discussed in Section III. Although Fjn) is determined by the kinetic equation which 
obeys the law of causality, 6Fj”) can be considered as a random noise which is 
almost independent of the history of the system. So the unphysical kinetic energy 
Kg is evaluated statistically on some assumptions. 

In the case of the sufficiently small error, the mean value of dK,/dt is equal to 
zero and so the standard deviation, u(dKJdt}, and the correlation time, 7, , are the 
quantities required for the evaluation of Kg, where T, is a characteristic time 
during which dK,/dt varies. Then K, is obtained statistically at time t. If the error 
is sufficiently small and t is not long, the random noise theory [13] shows that the 
mean value of K, equals zero and the standard deviation a{K,} is 

a{K,} N o{dKg/dt}(t~,)1/2. (19) 

Next we evaluate a(dK,/dt} on the following assumptions. 

(a) The particles are distributed at random. 
(b) The correlation between the unphysical force Wi(“) and the particle 

velocities vj does not exist. 
(c) The correlations between & , aj , and k {= (x;.,, - x,,)/d} do not exist. 

These assumptions do not involve the effects of the properties of the plasma such 
as the Debye shielding, the particle-bunching by the potential fluctuations, and so 
on. Although these effects influence the evaluation of a{dKp)/dt}, these assump- 
tions are almost correct in the limit of the small fluctuation energy. On the above 
assumptions, probabilities ~$6~) and q(k) are calculated as follows. 

pm = l/4 q(k) = (M - I k I)lM2, m-9 

Next we define the fluctuating kinetic energy Kj:) which is sampled at time tl . Then 
the square of the standard deviation o{dK$)/dt) is 

cr2{dK,‘“‘/dt} = f g (dK,‘l”l/dt)2 
s 24 

where Z, is the number of the samples, which are assumed sticiently large. In the 
following we eliminate the subscript I and the notation (l/Z,) CL, in order to avoid 
complicated expressions. Assumption (b) suggests that the second term of Eq. (21) 
vanishes. Accordingly we get an approximation 

g{dK;“‘/dt} = z ~~‘(8Fj”‘)~ = (vjz> ?f (8Fi’n))2, 
i=l h1 

(22) 
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where the angle brackets shows the average for the particles. Namely, we conclude 
that ${dK~)/&) is a product of the random force fluctuation of square magnitude, 
ciE1 (6Fj”))2, and the average of the square of velocity (Uj2), as discussed in Sec- 
tion I. The detailed derivation of CF=“, (W,!“))2 is shown in Appendix B. 

Using the subscripts i and e to denote quantities associated with the ion and 
electron, we obtain 

((G2) + (h2>)1’2 * qcn) (%), (23) 

where 
e2N 

w2--= 

9 - Eoj.LL (l/mi + l/me> s, 
0 

7p’(M,/M) = ,i’“‘“= dx (*)lK:,A + ; + ; cos x + ; cos2 x 

- Jy- (1 - cos x)j]li2, (25) 

where Salrl and IC,~~ are the smooth functions of x, which are equal to S, and 
Kz), when x/A = m, respectively. v(3) is too complex to be presented here, although 
it can be calculated analytically. Therefore, we show the numerical results later. 
In order to clarify the scaling law about the fluctuation in total energy, we neglect 
the terms for the ion: 

From the experimental results, Lewis et al. indicated that the fluctuation is approxi- 
mately proportional to (&J-1 for d/AD = 1 [6]. Our evaluation supports their 
empirical law. Generally it is proportional to [(2ZkQ112 * n, * X,1-l for all methods. 
The coefficient 77 tn) involves the unknown factor K:‘, which depends on each model. 

Determination of the Unphysical Grid Force or ~2’ 

The gridded systems with the shape factor Sjn) are similar to the gridless systems 
with the shape factor S* about the physical properties, whether they have the 
uniformity of space or not. Therefore, we study the fluctuation 
electric field. In the gridless system, the fluctuation spectrum 
equilibrium state, (E~E,~) [4, 51, is 

spectrum of the 
of the thermal 

(27) 
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where kVc = 2rm/L and h,” = Q - q,me(ve2)/n,e2 = & * E,,mi(vi2)/n,e2. In the 
gridded system, the problem is more difficult [lo]. When the Debye shielding effect 
can be neglected or the particles are distributed at random in space, however, we 
calculate it as well as the evaluation of a{dKjn)/dt} as follows. 

where 

(q,E,,:> = ; $$ 53S,/2)2, cm m 

52) = 6 + $ cos md,, , (2W 

&’ = (2 - 4y)2 (1 - cos mA,)2/12 + (2 - 4y)(l - cos md,,) 

x {y + (1 - 7) cos mA,}/2 + {y + (1 - y) cos mA,}* 

+ sin2 mA,/12. W’b) 

When &, is sufficiently large, Eq. (27) can be set equal to Eq. (28). As a result, we 
conclude the following. 

In Fig. 1, we show T(~)(X), which is calculated from Eqs. (25) and (30). 

FIG. 1. $“’ vs MJM. 
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III. NUMERICAL RESULTS AND COMPARISON WITH THE THEORY 

We carried out numerical simulations of the system explained in Section II in 
order to verify the scaling law. Namely we measure the standard deviation 
a{dH/Hdt} and the correlation time T, , and compare the estimated value o(dKJKdt} 
with the measured value o{dH/Hdt}. These two values are expected to be approxi- 
mately equal because the potential energy W is sufficiently smaller than the kinetic 
energy K. The algorithm for advancing particles is the standard time-centered 
leapfrog scheme and Eq. (6) is integrated by using FFT [9]. The total energy H is 
calculated by the use of the equation which is modified by replacing S by Si,“) in 
Eq. (7). As the initial state of plasma, the electron-ion pairs are put uniformly in 
space and the particle velocities are selected independently from Maxwellian 
distributions. In spite of the special distribution of space at the initial state, it is 
confirmed that a{dH/Hdt} measured per 40 steps is kept constant within a factor of 
3 through each run. In order to avoid the round-off errors, all data are treated 
with the double precision (1 word = 72 bits). 

Numerical Results 

We change the differential equation, Eq. (3), into the difference equation 

Wn+l - H,J/At = H,A, , (31) 

where H, is the total energy at the nth step (t = n * At). Accordingly, we compute 
the statistical values about Nb data of the following h, . 

h, = A, . At = H,+JH,, - 1 (n = 1, 2, 3 ,..., NJ. (32) 

Then the standard deviation u is calculated as 

u2 = (l/N,) 5 hi - (l/N,) c” h, 2. 
i=l I i-l I 

Using u, we calculate the empirical value vernp as follows. 

r]emp = 
7A2u i&W2 * N (mi/p)(vi2> + (me/p)u)(zk2> 

cop2 At L (<Vi2) + <Ve2>)“2 . 

In the case of finite At, the autocorrelation function, R(k . At), is defined as 

(33) 

R(k - At) = & Nzk hi * hi+k (k = 0, 1, 2, 3 ,... >, (35) 
t=1 

and the correlation time TV is calculated by assuming the Markoffian process [ 131. 
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As the simulation parameters, the following values are chosen. S,:, = 2 (111 2: 1); 
2M = 32 m 512; N = 160, 320, and 640; h, . (L/27r-l= 0.05 and0.2; (LTi”>/(LTe’j = 
0.01; mr/me = 25; up . r3t = 0.2, 0.1, 0.05, and 0.04; and Nd z 500. Figure 2 
shows that qemp keeps constant within a factor of 2, when c varies between lo-’ 
and 10-4. Therefore, it is experimentally confirmed that the scaling law, Eq. (23), 
holds good about the parameters 2M, N, df. and (rje*>. 

OlL D 
L-hi- --ILLL-pm---IIIw + 

10~' 10~' 10-Z 

FIG. 2. vemp vs D for various parameters in CIC-PK. The round brackets represent runs 
with the parameters: At. t’NL > A, in which vernP is greatly enhanced. 

Notice that Eq. (23) is obtained under the condition that time is continuous. So 
the next condition that the fine variation of space is calculated smoothly in time 
should be required: 

(Ue2)li2 * At < A. (36) 

Actually, if the above condition is not satisfied, qemp is enhanced, as shown in 
Fig. 2. However, by setting dt shorter or d longer and satisfying Eq. (32), vemp can 
be reduced to the usual values. 

Table 1 shows remp for each model in the case of M,/M = 1 and 3. 7emp is 
reduced by 50 % for CIC-PIC and method 2/2 but is reduced only 10 % for SUDS, 
when the higher modes are cut of? MJM = 4. 

Correlation Time 

As mentioned above, we replace the differential equations, Eq. (4), by difference 
equations in actual simulations. This means that the unphysical grid force M’jn) is 
kept constant during a time step rlt and the right-hand side of Eq. (18) is a step 
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TABLE I 

Comparisons between the Theoretical and Empirical Values of 7 

MJM = 1 MJM = ; 

Model 

CIC-PIG 

Modified SUDS 

Method 212 

‘lNllP %ilPh ?~UiP hP/? 

0.50 2.4 0.29 2.9 

0.26 1.3 0.23 1.4 

0.14 1.6 0.06 1.6 

function of t. Accordingly, the correlation time T, is larger than dt. If dt is suffi- 
cently large and the particle positions in one grid interval are randomized during 
one time step, T, is nearly equal to dt. On the contrary, if dt is sufficiently small and 
time is considered almost continuous, TV is expected to be proportional to d/vti, 
and is a characteristic time during which the particle distribution in one grid 
interval changes continuously. 

These features for the correlation time are presented in Fig. 3. It shows the 

I I 

-d.-- 
vlh.tL1 

O.l1',,,f 1 -,,*,-,' ,*e,,,' f 1 I', 
0.1 1.0 10.0 

FIG. 3. 7,/d vs A/& . fit) in CIC-PIC. 

dependence of T,/At on A/(At * r&, which indicates how many time steps a 
thermal electron takes to pass one grid interval. If AMAt * otb) is sufficiently small, 
T, is equal to At and is independent of the other parameters. When A/(At - Q) is 
larger than 3, it increases linearly in A/(At . ~3. Namely, 7, becomes independent 



146 ABE, iktIY~bfoT0 AND ITATANI 

of At and nearly equal to $ A/c,, . From the above results and Eq. (32). the 
optimum time step should be satisfied with the condition 

O.~A/L+~ < At < A/uth 

These results are consistent with Hackney’s in [I, Eq. (12)] in the case of the 
Debye length larger than half of the grid distance, although his evaluation is 
concerned with the heating time. 

VI. DISCUSSIONS AND CONCLUSIONS 

In Section 11, we introduced assumptions (a), (b), and (c) in order to evaluate 
the energy fluctuation statistically. In these assumptions the dynamical shielding 
effects of plasma are neglected. If the Debye length is sufficiently large, it is clear 
that these effects can be neglected. Judging from the properties of the fluctuation 
spectrum [see Eqs. (27) and (28)], we can expect that our scaling law will give the 
correct results, if Eq. (36) and the following condition are satisfied: 

2rrM, > L&l. (37) 

Actually, we observed that the accuracy of the scaling law is rather poor when M, 
is reduced to a parameter of 27rM, N 0.5 . L&j’. 

Concerning method 2/2 and modified SUDS, Temp agrees with v(3) within a 
factor of 1.6. Especially, it is well explained that Temr, for M,/M = 4 becomes 
smaller by only 10 ‘A than that for M,/M = 1. However, qemp in CIC-PIC is larger 
by a factor of 2.4 or 2.9 than ~7’~). We could not find the cause within the accuracy 
of this work. In order to improve the accuracy of the scaling law and the coefficient 
71, we should consider the dynamical effects of plasma and the error associated 
with the spatial interpolation of the scalar potential. If we adopt the empirical 
value for 7, however, we believe that our scaling law holds within a factor of 2. 

We discuss some applications of our work for other problems. It is well known 
that Eqs. (6) are solved by transforming them into difference equations. In this case 
our evaluation can be applied after slight modifications. The scaling law about the 
heating time TV is calculated in the case of 2?rM, > L.&l, because the random 
force fluctuation of square magnitude, <6F2), is obtained. Extensions to the 
two- or three-dimensional problem are possible for the usual models. Our consi- 
derations concerning the interpolation of the shape factor are generally applicable 
for the system with the more complex boundary conditions and curved spatial 
grids of the two- and three-dimensions. 
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APPENDIX A: THE DETERMINATION OF WEIGHTS (n = 3) 

When MC Q M, S(x - xi&, S(.u - ~3, and S(x - xl,,+r) can be approxi- 
mated by the Taylor expansion in the neighborhood of x - xi . From Eq. (12), we 
obtain 

SF’(x, Xj) = (wq + lI’(J + lV+J . S(x - Xj) 

- {(A + Sj) W-1 + SiM’o + (-A + Sj) lt’+l) ’ s’(X - Xj) + O(A”), 

(A.11 

where S’(x) is dS(x)/dx. Therefore, we get 

(A -i- Sj) w-1 + sjwo + (-A + Sj) 12'+1 = 0. 
64.2) 

In addition to the above conditions, we adopt the following condition that the 
weight function is continuous at Si = &d/2. 

IV-,(Sj = -42) = WO(Sj = +4/2), 

W,.l(Sj = +42) = lV,(Si = --4/2). 
64.3) 

Assuming Wi as a quadric polynomial of Si and solving Eqs. (A.2) and (A.3), we 
obtain Eq. (13), which involves the arbitrary constant y. 

When MC is nearly equal to M, we extend the above definition and use these 
weights. So one should take notice that Stn) never becomes the approximation of S 
in higher modes. 

APPENDIX B: DERIVATION OF xt=“, (8Fjn’)a 

We rewrite Eq. (17) for simplicity in the form 

where 
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Like the derivation of Eq. (22), averaging over the samples lets the cross terms 
cancel and yields xyFI (8Fjn))2 in the form 

j=l (&)’ ? ei” 5 (d$ sin mkd, + gzz cos WZ~A,)~. (~~2) 
i=l 711=1 

Considering assumption (c), we introduce the probabilities p(8J and q(k) [Eq. (20)], 
and replace the summations of i,j, and k by integrations: 

(B-3) 

where the notationi denotes the integration 

( 

a = 0, b=A for n = eoen; 
a = -A/2, b = A/2 for n = odd. 1 

Replacing the summation of nz by an integration yields the numerical factor v,+) of 
Eq. (23), and the random force fluctuation of square magnitude is obtained as 
follows. 

(B-4) 
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